Infinite-dimensional, holomorphic functions have been studied in detail over the last several decades, due to their relevance to parametric differential equations and computational uncertainty quantification. The approximation of such functions from finitely many samples is of particular interest, due to the practical importance of constructing surrogate models to complex mathematical models of physical processes. In a previous work, [5] we studied the approximation of so-called Banach-valued, $(\boldsymbol{b},\varepsilon)$-holomorphic functions on the infinite-dimensional hypercube $[-1,1]^{\mathbb{N}}$ from $m$ (potentially adaptive) samples. In particular, we derived lower bounds for the adaptive $m$-widths for classes of such functions, which showed that certain algebraic rates of the form $m^{1/2-1/p}$ are the best possible regardless of the sampling-recovery pair. In this work, we continue this investigation by focusing on the practical case where the samples are pointwise evaluations drawn identically and independently from a probability measure. Specifically, for Hilbert-valued $(\boldsymbol{b},\varepsilon)$-holomorphic functions, we show that the same rates can be achieved (up to a small polylogarithmic or algebraic factor) for essentially arbitrary tensor-product Jacobi (ultraspherical) measures. Our reconstruction maps are based on least squares and compressed sensing procedures using the corresponding orthonormal Jacobi polynomials. In doing so, we strengthen and generalize past work that has derived weaker nonuniform guarantees for the uniform and Chebyshev measures (and corresponding polynomials) only. We also extend various best $s$-term polynomial approximation error bounds to arbitrary Jacobi polynomial expansions. Overall, we demonstrate that i.i.d.\ pointwise samples are near-optimal for the recovery of infinite-dimensional, holomorphic functions.
翻译:暂无翻译