Two-time-scale stochastic approximation, a generalized version of the popular stochastic approximation, has found broad applications in many areas including stochastic control, optimization, and machine learning. Despite its popularity, theoretical guarantees of this method, especially its finite-time performance, are mostly achieved for the linear case while the results for the nonlinear counterpart are very sparse. Motivated by the classic control theory for singularly perturbed systems, we study in this paper the asymptotic convergence and finite-time analysis of the nonlinear two-time-scale stochastic approximation. Under some fairly standard assumptions, we provide a formula that characterizes the rate of convergence of the main iterates to the desired solutions. In particular, we show that the method achieves a convergence in expectation at a rate $\mathcal{O}(1/k^{2/3})$, where $k$ is the number of iterations. The key idea in our analysis is to properly choose the two step sizes to characterize the coupling between the fast and slow-time-scale iterates.


翻译:两种时间尺度的随机近似值是流行的随机近似值的通用版本,它在许多领域都得到了广泛的应用,包括随机控制、优化和机器学习。尽管它很受欢迎,但这一方法的理论保障,特别是其有限时间性能,大部分是线性案例的理论保障,而非线性对应方的结果则非常稀少。我们受对奇特扰动系统的经典控制理论的驱动,在本文中研究非线性双级随机近近似值的无症状趋同和有限时间分析。根据一些相当标准的假设,我们提供了一种公式,说明主要试样与理想解决办法的趋同率。特别是,我们表明,该方法达到了预期的趋同率,以$\mathcal{O}(1/k ⁇ 2/3}美元,其中美元是迭代数。我们分析的关键思想是正确选择两步尺大小,以描述快速和慢时速级的近似值之间的合并。

0
下载
关闭预览

相关内容

专知会员服务
16+阅读 · 2021年3月4日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Arxiv
0+阅读 · 2021年5月17日
Arxiv
0+阅读 · 2021年5月16日
VIP会员
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员