This study investigates the theoretical foundations of t-distributed stochastic neighbor embedding (t-SNE), a popular nonlinear dimension reduction and data visualization method. A novel theoretical framework for the analysis of t-SNE based on the gradient descent approach is presented. For the early exaggeration stage of t-SNE, we show its asymptotic equivalence to a power iteration based on the underlying graph Laplacian, characterize its limiting behavior, and uncover its deep connection to Laplacian spectral clustering, and fundamental principles including early stopping as implicit regularization. The results explain the intrinsic mechanism and the empirical benefits of such a computational strategy. For the embedding stage of t-SNE, we characterize the kinematics of the low-dimensional map throughout the iterations, and identify an amplification phase, featuring the intercluster repulsion and the expansive behavior of the low-dimensional map. The general theory explains the fast convergence rate and the exceptional empirical performance of t-SNE for visualizing clustered data, brings forth the interpretations of the t-SNE output, and provides theoretical guidance for selecting tuning parameters in various applications.
翻译:本研究调查了T-分布式随机邻居嵌入(t-SNE)的理论基础,这是一种流行的非线性尺寸减少和数据可视化方法。介绍了基于梯度下移法分析t-SNE的新理论框架。对于t-SNE早期的夸大阶段,我们展示了它与基于基本图Laplaceian的动力迭代的无症状等同性,其限制行为的特点,并揭示了它与Laplaceian光谱集群的深层联系,以及基本原则,包括早期停止作为隐含的正规化。结果解释了这种计算战略的内在机制和实证效益。对于t-SNE的嵌入阶段,我们给整个迭代中低维图的动态定了特征,并确定了一个振动阶段,其特点是集群间反作用和低维图的外延行为。一般理论解释了T-SNE的快速趋同率和特异的经验性性性表现,用以对集群数据进行可视化,提出了对T-SNE输出应用的各种参数的诠释。