This paper presents an algorithm to geometrically characterize inertial parameter identifiability for an articulated robot. The geometric approach tests identifiability across the infinite space of configurations using only a finite set of conditions and without approximation. It can be applied to general open-chain kinematic trees ranging from industrial manipulators to legged robots, and it is the first solution for this broad set of systems that is provably correct. The high-level operation of the algorithm is based on a key observation: Undetectable changes in inertial parameters can be represented as sequences of inertial transfers across the joints. Drawing on the exponential parameterization of rigid-body kinematics, undetectable inertial transfers are analyzed in terms of observability from linear systems theory. This analysis can be applied recursively, and lends an overall complexity of $O(N)$ to characterize parameter identifiability for a system of $N$ bodies. Matlab source code for the new algorithm is provided.
翻译:暂无翻译