Large-scale pre-trained language models (PLMs) have advanced Graph-to-Text (G2T) generation by processing the linearised version of a graph. However, the linearisation is known to ignore the structural information. Additionally, PLMs are typically pre-trained on free text which introduces domain mismatch between pre-training and downstream G2T generation tasks. To address these shortcomings, we propose graph masking pre-training strategies that neither require supervision signals nor adjust the architecture of the underlying pre-trained encoder-decoder model. When used with a pre-trained T5, our approach achieves new state-of-the-art results on WebNLG+2020 and EventNarrative G2T generation datasets. Our method also shows to be very effective in the low-resource setting.
翻译:大型预培训语言模型(PLMs)通过处理直线版的图表,提高了图形到文字(G2T)的生成。然而,线性化已知忽略了结构信息。此外,PLMs通常在免费文本上接受预先培训,从而在培训前任务和下游G2T生成任务之间引入域错配。为了解决这些缺陷,我们建议用图示来掩盖培训前战略,既不需要监督信号,也不需要调整先培训的编码解码模型的结构。在使用前培训T5时,我们的方法在WebNLG+2020和事件Narrature G2T生成数据集上取得了新的最新结果。我们的方法在低资源环境中也非常有效。