Remote photoplethysmography (rPPG) technology has drawn increasing attention in recent years. It can extract Blood Volume Pulse (BVP) from facial videos, making many applications like health monitoring and emotional analysis more accessible. However, as the BVP signal is easily affected by environmental changes, existing methods struggle to generalize well for unseen domains. In this paper, we systematically address the domain shift problem in the rPPG measurement task. We show that most domain generalization methods do not work well in this problem, as domain labels are ambiguous in complicated environmental changes. In light of this, we propose a domain-label-free approach called NEuron STructure modeling (NEST). NEST improves the generalization capacity by maximizing the coverage of feature space during training, which reduces the chance for under-optimized feature activation during inference. Besides, NEST can also enrich and enhance domain invariant features across multi-domain. We create and benchmark a large-scale domain generalization protocol for the rPPG measurement task. Extensive experiments show that our approach outperforms the state-of-the-art methods on both cross-dataset and intra-dataset settings.


翻译:近些年来,远程光谱成像(rPPG)技术已引起越来越多的注意。 它可以从面部视频中提取血液量脉冲(BVP),使健康监测和情感分析等许多应用更容易获得。 但是,由于BVP信号很容易受到环境变化的影响,现有方法难以为无形领域广泛推广。 在本文件中,我们系统地处理RPPG测量任务中的域变问题。 我们显示,大多数域的概括化方法在这一问题上效果不佳,因为域标签在复杂的环境变化中模糊不清。 有鉴于此,我们提议了一种称为NEuron Structurdere模型(NESTEST)的无域标签方法。 NEST通过在培训期间最大限度地扩大地貌空间的覆盖面来改进一般化能力,从而减少了在推断期间未充分利用地貌激活的机会。 此外, NEST还可以丰富和加强多领域域的域变特性。 我们为REPG测量任务创建和基准的大型域域通用协议。 广泛的实验显示,我们的方法超越了内部数据设置和内部数据设置方法。</s>

0
下载
关闭预览

相关内容

【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
45+阅读 · 2022年9月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员