A central goal in the cognitive sciences is the development of computational models of mental representations of object concepts. This paper introduces Variational Interpretable Concept Embeddings (VICE), an approximate Bayesian method for learning interpretable object concept embeddings from human behavior in an odd-one-out triplet task. We use variational inference to obtain a sparse, non-negative solution with uncertainty estimates about each embedding value. We exploit these estimates to select the dimensions that explain the data automatically. We introduce a PAC learning bound for VICE that can be used to estimate generalization performance or determine a sufficient sample size for different experimental designs. VICE rivals or outperforms its predecessor, SPoSE, at predicting human behavior in the odd-one-out triplet task. Furthermore, VICE object representations are substantially more reproducible and consistent across random initializations.
翻译:认知科学的一个中心目标是开发物体概念心理表现的计算模型。本文件介绍了可解释概念嵌入的变式模型(VICE),这是一种近似贝叶斯学方法,用于学习从人类行为中嵌入的可解释物体概念,以进行奇数一出三重任务。我们使用变式推论获得一种稀疏、非负式的解决方案,对每个嵌入值进行不确定性估计。我们利用这些估算来选择自动解释数据的维度。我们引入了可用于估计通用性性能或确定不同实验设计足够样本大小的VICE PAC学习。VIC对立面或优于其前身SPOSE,在单数一出三重任务中预测人类行为。此外,VICE对象的表达方式在随机初始化中可重复和一致得多。