Click-through rate (CTR) prediction, whose goal is to predict the probability of the user to click on an item, has become increasingly significant in the recommender systems. Recently, some deep learning models with the ability to automatically extract the user interest from his/her behaviors have achieved great success. In these work, the attention mechanism is used to select the user interested items in historical behaviors, improving the performance of the CTR predictor. Normally, these attentive modules can be jointly trained with the base predictor by using gradient descents. In this paper, we regard user interest modeling as a feature selection problem, which we call user interest selection. For such a problem, we propose a novel approach under the framework of the wrapper method, which is named Meta-Wrapper. More specifically, we use a differentiable module as our wrapping operator and then recast its learning problem as a continuous bilevel optimization. Moreover, we use a meta-learning algorithm to solve the optimization and theoretically prove its convergence. Meanwhile, we also provide theoretical analysis to show that our proposed method 1) efficiencies the wrapper-based feature selection, and 2) achieves better resistance to overfitting. Finally, extensive experiments on three public datasets manifest the superiority of our method in boosting the performance of CTR prediction.
翻译:点击率( CTR) 预测( CTR), 目标是预测用户点击某个项目的概率, 其目标在于预测用户点击某个项目的概率, 这一点在推荐者系统中已变得日益重要。 最近, 一些能够自动从用户的行为中获取兴趣的深层次学习模式取得了巨大成功。 在这些工作中, 关注机制被用来选择历史行为中感兴趣的用户项目, 改进 CTR 预测器的性能。 通常, 这些关注模块可以通过使用渐渐下降来与基准预测器共同培训。 在本文中, 我们将用户兴趣建模视为一个特征选择问题, 我们称之为用户兴趣选择。 对于这样一个问题, 我们在包装方法的框架内提出了一个新颖的方法, 叫做 Meta- rapper 。 更具体地说, 我们使用一个不同的模块作为包装操作器操作者, 然后重新表述其学习问题, 作为一种连续双级优化。 此外, 我们使用一种元学习算法来解决优化和理论上证明其趋同性。 同时, 我们还提供理论分析, 以显示我们拟议的方法1) 提高了基于包装的特性选择, 的特性选择, 以及 2 在改进我们的C 改进的高级性 。