Personalisation of products and services is fast becoming the driver of success in banking and commerce. Machine learning holds the promise of gaining a deeper understanding of and tailoring to customers' needs and preferences. Whereas traditional solutions to financial decision problems frequently rely on model assumptions, reinforcement learning is able to exploit large amounts of data to improve customer modelling and decision-making in complex financial environments with fewer assumptions. Model explainability and interpretability present challenges from a regulatory perspective which demands transparency for acceptance; they also offer the opportunity for improved insight into and understanding of customers. Post-hoc approaches are typically used for explaining pretrained reinforcement learning models. Based on our previous modeling of customer spending behaviour, we adapt our recent reinforcement learning algorithm that intrinsically characterizes desirable behaviours and we transition to the problem of asset management. We train inherently interpretable reinforcement learning agents to give investment advice that is aligned with prototype financial personality traits which are combined to make a final recommendation. We observe that the trained agents' advice adheres to their intended characteristics, they learn the value of compound growth, and, without any explicit reference, the notion of risk as well as improved policy convergence.
翻译:产品和服务的个性化正在迅速成为银行和商业取得成功的动力。机器学习有希望更深入地了解和适应客户的需要和偏好。 传统的金融决策问题的传统解决办法往往依赖模型假设,而强化学习则能够利用大量数据来改进复杂金融环境中的客户建模和决策,而假设较少。模型的可解释性和可解释性从监管角度提出了挑战,需要透明度才能被接受;它们也为更好地了解和了解客户提供了机会。 事后方法通常用于解释预先训练的强化学习模式。根据我们以前的客户支出行为模型,我们调整了我们最近的强化学习算法,这种算法本质上是可取行为的特点,我们向资产管理问题过渡。我们培训了固有的可解释的强化学习代理,以提供与典型财务人格特征相一致的投资建议,这些特征与最后建议相结合。我们注意到,受过培训的代理的意见符合其预期特征,他们学习复合增长的价值,并且没有明确提及风险概念以及改进政策趋同。