We propose Flexible Vertical Federated Learning (Flex-VFL), a distributed machine algorithm that trains a smooth, non-convex function in a distributed system with vertically partitioned data. We consider a system with several parties that wish to collaboratively learn a global function. Each party holds a local dataset; the datasets have different features but share the same sample ID space. The parties are heterogeneous in nature: the parties' operating speeds, local model architectures, and optimizers may be different from one another and, further, they may change over time. To train a global model in such a system, Flex-VFL utilizes a form of parallel block coordinate descent, where parties train a partition of the global model via stochastic coordinate descent. We provide theoretical convergence analysis for Flex-VFL and show that the convergence rate is constrained by the party speeds and local optimizer parameters. We apply this analysis and extend our algorithm to adapt party learning rates in response to changing speeds and local optimizer parameters. Finally, we compare the convergence time of Flex-VFL against synchronous and asynchronous VFL algorithms, as well as illustrate the effectiveness of our adaptive extension.
翻译:我们建议采用灵活垂直联邦学习(Flex-VFL)这一分布式机器算法,在分布式系统中用垂直分割数据来培训一个光滑的非混凝土功能。我们考虑一个系统,由几个愿意合作学习全球函数的各方组成。每个政党都拥有一个本地数据集;数据集具有不同的特征,但具有相同的识别空间样本。各方性质各异:各方的操作速度、地方模型架构和优化可能彼此不同,而且它们也可能随着时间的变化而变化。为了在这样一个系统中培训一个全球模型,Flex-VFLL使用了一种平行的块协调下行模式,其中各方通过静电协调下行对全球模型进行分割。我们为Flex-VFLF提供了理论趋同分析,并表明趋同率受政党速度和地方优化参数的限制。我们应用这一分析并扩展我们的算法,以适应变化的速度和本地优化参数。最后,我们比较了Flex-FLF的趋同时间与同步和无同步同步的紫外线动算法的扩展效果,以说明我们的调整效果。