Despite the spectacular successes, deep neural networks (DNN) with a huge number of adjustable parameters remain largely black boxes. To shed light on the hidden layers of DNN, we study supervised learning by a DNN of width $N$ and depth $L$ consisting of perceptrons with $c$ inputs by a statistical mechanics approach called the teacher-student setting. We consider an ensemble of student machines that exactly reproduce $M$ sets of $N$ dimensional input/output relations provided by a teacher machine. We analyze the ensemble theoretically using a replica method (H. Yoshino (2020)) and numerically performing greedy Monte Carlo simulations. The replica theory which works on high dimensional data $N \gg 1$ becomes exact in 'dense limit' $N \gg c \gg 1$ and $M \gg 1$ with fixed $\alpha=M/c$. Both the theory and the simulation suggest learning by the DNN is quite heterogeneous in the network space: configurations of the machines are more correlated within the layers closer to the input/output boundaries while the central region remains much less correlated due to over-parametrization. Deep enough systems relax faster thanks to the less correlated central region. Remarkably both the theory and simulation suggest generalization-ability of the student machines does not vanish even in the deep limit $L \gg 1$ where the system becomes strongly over-parametrized. We also consider the impact of effective dimension $D(\leq N)$ of data by incorporating the hidden manifold model (S. Goldt et al (2020)) into our model. The replica theory implies that the loop corrections to the dense limit, which reflect correlations between different nodes in the network, become enhanced by either decreasing the width $\ N$ or decreasing the effective dimension $D$ of the data. Simulation suggests both leads to significant improvements in generalization-ability.


翻译:尽管取得了令人瞩目的成功,但具有大量可调整参数的深神经网络(DNN)仍然在很大程度上是黑盒子。为了揭示DNN隐藏层,我们研究由宽度为00美元、深度为1美元的DNNN监管学习,该DNN由称为师生设置的统计机理学方法构成,包含以美元为单位的接收器和投入为单位的深度为1美元。我们认为,一套学生机器的组合完全复制了由教师机器提供的一套以美元为单位的立体输入/输出关系。我们利用复制方法(H. Yoshino (202020))从理论上分析集合,并用数字方式进行贪婪的蒙特卡洛模拟。在高度数据模型数据上工作的复制理论 $NNN\gg 1美元是准确的。Smodealliveral drevelopal dislational dislational dismationality, 在普通数据中,Smiditional-lational-deal-deal lax the lax lax the ladeal demodeal remodeal demodeal demodeal demodeal dal deal deal demodeal demode, laut the mislation) 20 dislation 20 20) 和(从20n d d) 20 d) 也逐渐不甚甚甚甚甚甚甚甚甚甚低, 。我们更低的系统显示。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
19+阅读 · 2021年2月4日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员