We present a new method for analyzing stochastic epidemic models under minimal assumptions. The method, dubbed DSA, is based on a simple yet powerful observation, namely that population-level mean-field trajectories described by a system of PDE may also approximate individual-level times of infection and recovery. This idea gives rise to a certain non-Markovian agent-based model and provides an agent-level likelihood function for a random sample of infection and/or recovery times. Extensive numerical analyses on both synthetic and real epidemic data from the FMD in the United Kingdom and the COVID-19 in India show good accuracy and confirm method's versatility in likelihood-based parameter estimation. The accompanying software package gives prospective users a practical tool for modeling, analyzing and interpreting epidemic data with the help of the DSA approach.
翻译:我们提出了一种在最低假设条件下分析随机感染和/或恢复时间样本的新方法,称为DSA的方法基于简单而有力的观察,即PDE系统描述的人口平均轨道也可能接近个人感染和康复的时间,这种想法产生了某种非马尔科维安制剂模式,为随机抽样的感染和/或恢复时间提供了一种代理级别的可能性功能。联合王国FMD和印度COVID-19对合成和真实的流行病数据进行的广泛数字分析,显示了良好的准确性,并证实了方法在基于可能性的参数估计方面的多变性。配套软件包为潜在用户提供了一种实用工具,用于在DSA方法的帮助下,对流行病数据进行建模、分析和解释。