Let $\langle n,k \rangle$, $\langle B_n k \rangle$, and $\langle D_n, k \rangle$ be the Eulerian numbers in the types A, B, and D, respectively -- that is, the number of permutations of n elements with k descents, the number of signed permutations (of n elements) with k type B descents, the number of even signed permutations (of n elements) with k type D descents. Let $S_n(t) = \sum_{k = 0}^{n-1} \langle n,k \rangle t^k$, $B_n(t) = \sum_{k = 0}^{n}\langle B_n,k \rangle t^k$, and $D_n(t) = \sum_{k = 0}^{n}\langle D_n,k \rangle t^k$. We give bijective proofs of the identity $B_n(t^2) = (1 + t)^{n+1}S_n(t) - 2^{n}tS_n(t^2)$ and of Stembridge's identity $D_n(t) = B_n (t) - n2^{n-1}tS_{n-1}(t)$. These bijective proofs rely on a representation of signed permutations as paths. Using this representation we also establish a bijective correspondence between even signed permutations and pairs $(w, E)$ with $([n], E)$ a threshold graph and $w$ a degree ordering of $([n], E)$, which we use to obtain bijective proofs of enumerative results for threshold graphs.
翻译:Lets\ langle n, k\ rangle $, $\ langle B_ n k\ rangle$, $\ langle D_ n, k\ rangle$ 是 A、 B和 D 类型中的 Eullirian 数字, 即使用 k 下方 的 n 元素的排列次数, 使用 k B 类型下方 (n 元素) 签名的排列次数, 使用 k 类型 D 下方 的 n 元素的甚至签名的排列次数 。 (t) [t) =\ summall $; (n) = = $ n n-1 美元, k\ true $ n= t= 美元 美元, 也使用 $_ signal_ n_ n (n) i) 和 ligard (n_ t) a. (n_ t) man_ t) a.