This investigation is firstly focused into showing that two metric parameters represent the same object in graph theory. That is, we prove that the multiset resolving sets and the ID-colorings of graphs are the same thing. We also consider some computational and combinatorial problems of the multiset dimension, or equivalently, the ID-number of graphs. We prove that the decision problem concerning finding the multiset dimension of graphs is NP-complete. We consider the multiset dimension of king grids and prove that it is bounded above by $4$. We also give a characterization of the strong product graphs with one factor being a complete graph, and whose multiset dimension is not infinite.
翻译:本次调查首先侧重于显示两个维度参数在图形理论中代表同一个对象。 也就是说, 我们证明多个维度数据集和图形的 ID 颜色是相同的。 我们还考虑多个维度的计算和组合问题, 或者相等的图形的 ID 编号。 我们证明找到图形多维度的决定问题是NP- 完整的。 我们考虑王格网的多维度, 并证明它被四美元所约束 。 我们还对强大的产品图形进行定性, 其中一个要素是完整的图形, 其多维度不是无限的 。</s>