We propose a deep learning method for three-dimensional reconstruction in low-dose helical cone-beam computed tomography. We reconstruct the volume directly, i.e., not from 2D slices, guaranteeing consistency along all axes. In a crucial step beyond prior work, we train our model in a self-supervised manner in the projection domain using noisy 2D projection data, without relying on 3D reference data or the output of a reference reconstruction method. This means the fidelity of our results is not limited by the quality and availability of such data. We evaluate our method on real helical cone-beam projections and simulated phantoms. Our reconstructions are sharper and less noisy than those of previous methods, and several decibels better in quantitative PSNR measurements. When applied to full-dose data, our method produces high-quality results orders of magnitude faster than iterative techniques.
翻译:我们提出一种深度学习方法,用于低剂量热锥膜-波束计算断层摄影的三维重建。我们直接重建体积,即不是从2D切片中进行,保证所有轴线的一致性。在比先前工作更关键的一步中,我们使用噪音的2D投影数据,不依靠3D参考数据或参考重建方法的输出,以自我监督的方式在投影领域培训我们的模型。这意味着我们结果的准确性不受此类数据的质量和可获得性的限制。我们用真实的 helical锥形-波束预测和模拟的幻影来评估我们的方法。我们的重建比以往方法更锋利、更不那么吵,在定量的PSNR测量中也有一些脱菌更好。当应用到全剂量数据时,我们的方法产生比迭代技术更快的高质量结果序列。