In modern building infrastructures, the chance to devise adaptive and unsupervised data-driven health monitoring systems is gaining in popularity due to the large availability of big data from low-cost sensors with communication capabilities and advanced modeling tools such as Deep Learning. The main purpose of this paper is to combine deep neural networks with Bidirectional Long Short Term Memory and advanced statistical analysis involving Instantaneous Frequency and Spectral Kurtosis to develop an accurate classification tool for tensile, shear and mixed modes originated from acoustic emission events (cracks). We investigated on effective event descriptors to capture the unique characteristics from the different types of modes. Tests on experimental results confirm that this method achieves promising classification among different crack events and can impact on the design of future on structural health monitoring (SHM) technologies. This approach is effective to classify incipient damages with 92% of accuracy, which is advantageous to plan maintenance.


翻译:在现代建筑基础设施中,设计适应性和不受监督的由数据驱动的健康监测系统的机会越来越受欢迎,因为从具有通信能力的低成本传感器和深学习等先进的模型工具获得大量大数据,本文件的主要目的是将深神经网络与双向长期短期记忆结合起来,并进行涉及不时频率和光谱疾病在内的高级统计分析,以开发一个精确的分类工具,用于对来自声学排放事件(裂缝)的抗拉、剪和混合模式进行分类。我们调查了有效事件描述器,以捕捉不同类型模式的独特特征。实验结果测试证实,这一方法在不同裂缝事件之间实现有希望的分类,并能够影响未来结构健康监测技术的设计。这种方法有效地将早期损害分类为92%的准确度,这有利于计划维护。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
233+阅读 · 2019年10月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
已删除
将门创投
5+阅读 · 2019年4月4日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Learning Memory-guided Normality for Anomaly Detection
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
233+阅读 · 2019年10月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
已删除
将门创投
5+阅读 · 2019年4月4日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
Top
微信扫码咨询专知VIP会员