The logistic regression model is one of the most powerful statistical methods for the analysis of binary data. The logistic regression allows to use a set of covariates to explain the binary responses. The mixture of logistic regression models is used to fit heterogeneous populations through an unsupervised learning approach. The multicollinearity problem is one of the most common problems in logistics and a mixture of logistic regressions where the covariates are highly correlated. This problem results in unreliable maximum likelihood estimates for the regression coefficients. This research developed shrinkage methods to deal with the multicollinearity in a mixture of logistic regression models. These shrinkage methods include ridge and Liu-type estimators. Through extensive numerical studies, we show that the developed methods provide more reliable results in estimating the coefficients of the mixture. Finally, we applied the shrinkage methods to analyze the bone disorder status of women aged 50 and older.
翻译:后勤回归模型是分析二元数据最有力的统计方法之一。后勤回归模型允许使用一套共变法来解释二元反应。后勤回归模型的混合方法用于通过不受监督的学习方法来适应不同人群。多曲线问题是物流中最常见的问题之一,也是共同变量高度关联的后勤回归模型的混合方法之一。这一问题导致回归系数的最大概率估计值不可靠。这一研究发展了处理多种物流回归模型组合中的多曲线性的缩缩缩方法。这些缩缩缩方法包括脊和刘类估计值。通过广泛的数字研究,我们表明,所开发的方法在估计混合物的系数方面提供了更可靠的结果。最后,我们运用了缩缩缩方法来分析50岁和50岁以上的妇女的骨骼失常状况。