The maximum-cut problem is one of the fundamental problems in combinatorial optimization. With the advent of quantum computers, both the maximum-cut and the equivalent quadratic unconstrained binary optimization problem have experienced much interest in recent years. This article aims to advance the state of the art in the exact solution of both problems -- by using mathematical programming techniques on digital computers. The main focus lies on sparse problem instances, although also dense ones can be solved. We enhance several algorithmic components such as reduction techniques and cutting-plane separation algorithms, and combine them in an exact branch-and-cut solver. Furthermore, we provide a parallel implementation. The new solver is shown to significantly outperform existing state-of-the-art software for sparse MaxCut and QUBO instances. Furthermore, we improve the best known bounds for several instances from the 7th DIMACS Challenge and the QPLIB, and solve some of them (for the first time) to optimality.
翻译:最大剪切问题是组合优化中的根本问题之一。 随着量子计算机的出现, 最大剪切和等效的四进制二进制优化问题近年来引起了很大的兴趣。 文章的目的是通过在数字计算机上使用数学编程技术, 来提高这两个问题的确切解决方案的先进程度。 主要焦点是小问题实例, 虽然也可以解决密度问题。 我们强化了几个算法组成部分, 如削减技术和切片分离算法, 并将它们合并到一个精确的分支和截断解算法中。 此外, 我们提供了一个平行的实施。 新的解析器显示, 已经大大超越了稀有的 MaxCut 和 QUBO 实例的现有最先进的软件。 此外, 我们改进了从 DIMACS 7 挑战 和 QPLIB 等若干实例的已知最佳界限, 并( 第一次) 解决其中的一些选项, 以便达到最佳性 。