Kernel matrices, as well as weighted graphs represented by them, are ubiquitous objects in machine learning, statistics and other related fields. The main drawback of using kernel methods (learning and inference using kernel matrices) is efficiency -- given $n$ input points, most kernel-based algorithms need to materialize the full $n \times n$ kernel matrix before performing any subsequent computation, thus incurring $\Omega(n^2)$ runtime. Breaking this quadratic barrier for various problems has therefore, been a subject of extensive research efforts. We break the quadratic barrier and obtain $\textit{subquadratic}$ time algorithms for several fundamental linear-algebraic and graph processing primitives, including approximating the top eigenvalue and eigenvector, spectral sparsification, solving linear systems, local clustering, low-rank approximation, arboricity estimation and counting weighted triangles. We build on the recent Kernel Density Estimation framework, which (after preprocessing in time subquadratic in $n$) can return estimates of row/column sums of the kernel matrix. In particular, we develop efficient reductions from $\textit{weighted vertex}$ and $\textit{weighted edge sampling}$ on kernel graphs, $\textit{simulating random walks}$ on kernel graphs, and $\textit{importance sampling}$ on matrices to Kernel Density Estimation and show that we can generate samples from these distributions in $\textit{sublinear}$ (in the support of the distribution) time. Our reductions are the central ingredient in each of our applications and we believe they may be of independent interest. We empirically demonstrate the efficacy of our algorithms on low-rank approximation (LRA) and spectral sparsification, where we observe a $\textbf{9x}$ decrease in the number of kernel evaluations over baselines for LRA and a $\textbf{41x}$ reduction in the graph size for spectral sparsification.
翻译:内核矩阵及其代表的加权图是机器学习、统计和其他相关字段中无处不在的 { 平流 { 平流 { 平流 { 平流 { 平流 { 平流 { 平流 { 平流 { 平流 { 平流 { 平流 { 平流 { 平流 { 平流 { 平流 { 平流 { 平流 { 平流 { 平流 { 平流 { 平流 } 的主要缺点是效率 -- -- 以美元计输入点为单位,以美元计,以美元计 平流 平流 平流 $ 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流 平流