We revisit the Heaviest Induced Ancestors (HIA) problem that was introduced by Gagie, Gawrychowski, and Nekrich [CCCG 2013] and has a number of applications in string algorithms. Let $T_1$ and $T_2$ be two rooted trees whose nodes have weights that are increasing in all root-to-leaf paths, and labels on the leaves, such that no two leaves of a tree have the same label. A pair of nodes $(u, v)\in T_1 \times T_2$ is \emph{induced} if and only if there is a label shared by leaf-descendants of $u$ and $v$. In an HIA query, given nodes $x \in T_1$ and $y \in T_2$, the goal is to find an induced pair of nodes $(u, v)$ of the maximum total weight such that $u$ is an ancestor of~$x$ and $v$ is an ancestor of $y$. Let $n$ be the upper bound on the sizes of the two trees. It is known that no data structure of size $\tilde{\mathcal{O}}(n)$ can answer HIA queries in $o(\log n / \log \log n)$ time [Charalampopoulos, Gawrychowski, Pokorski; ICALP 2020]. This (unconditional) lower bound is a $\operatorname{polyloglog} n$ factor away from the query time of the fastest $\tilde{\mathcal{O}}(n)$-size data structure known to date for the HIA problem [Abedin, Hooshmand, Ganguly, Thankachan; Algorithmica 2022]. In this work, we resolve the query-time complexity of the HIA problem for the near-linear space regime by presenting a data structure that can be built in $\tilde{\mathcal{O}}(n)$ time and answers HIA queries in $\mathcal{O}(\log n/\log\log n)$ time. As a direct corollary, we obtain an $\tilde{\mathcal{O}}(n)$-size data structure that maintains the LCS of a static string and a dynamic string, both of length at most $n$, in time optimal for this space regime. The main ingredients of our approach are fractional cascading and the utilization of an $\mathcal{O}(\log n/ \log\log n)$-depth tree decomposition.


翻译:我们重新审视由 Gagie、 Gawrychowski 和 Nekrich [CCCG 2013] 推出且在字符串算法中有许多应用程序的( 降幅 ) (降幅 ) (降幅 ) (降幅 ) (降幅 ) (降幅 ) (降幅 ) ; 降幅 ) (降幅 ) (降幅 ) (降幅 ) (降幅 ) (降幅 ) (降幅 ) (降幅 ) (降幅 ) (降幅 ) (降幅 ) (降幅 降幅 ) (降幅 ) (降幅 ) (降幅 降幅 ) (降幅 降幅 ) (降幅 降幅 ) (降幅) (降幅) (降幅 (降幅) (降幅) (降幅) (降幅 (降幅) (降幅) (降幅 (降幅) (降幅幅幅幅幅幅) (降幅幅) (降幅) (降幅(降幅) (降幅) (降幅) (降幅幅幅幅幅)

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
38+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月27日
Arxiv
0+阅读 · 2023年3月27日
Arxiv
0+阅读 · 2023年3月22日
Arxiv
10+阅读 · 2021年11月3日
VIP会员
相关VIP内容
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
38+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员