The beer game is a widely used in-class game that is played in supply chain management classes to demonstrate the bullwhip effect. The game is a decentralized, multi-agent, cooperative problem that can be modeled as a serial supply chain network in which agents cooperatively attempt to minimize the total cost of the network even though each agent can only observe its own local information. Each agent chooses order quantities to replenish its stock. Under some conditions, a base-stock replenishment policy is known to be optimal. However, in a decentralized supply chain in which some agents (stages) may act irrationally (as they do in the beer game), there is no known optimal policy for an agent wishing to act optimally. We propose a machine learning algorithm, based on deep Q-networks, to optimize the replenishment decisions at a given stage. When playing alongside agents who follow a base-stock policy, our algorithm obtains near-optimal order quantities. It performs much better than a base-stock policy when the other agents use a more realistic model of human ordering behavior. Unlike most other algorithms in the literature, our algorithm does not have any limits on the beer game parameter values. Like any deep learning algorithm, training the algorithm can be computationally intensive, but this can be performed ahead of time; the algorithm executes in real time when the game is played. Moreover, we propose a transfer learning approach so that the training performed for one agent and one set of cost coefficients can be adapted quickly for other agents and costs. Our algorithm can be extended to other decentralized multi-agent cooperative games with partially observed information, which is a common type of situation in real-world supply chain problems.


翻译:啤酒游戏是一个在供应链管理等级中广泛使用的阶级游戏,用来展示牛排效应。这个游戏是一个分散的、多剂的、合作性的问题,可以模拟成一个连环供应链网络,其中代理商合作试图尽量减少网络的总成本,尽管每个代理商只能观察自己的当地信息。每个代理商选择订单数量来补充其库存。在某些条件下,一个基地储备补充政策是最佳的。然而,在一个分散的供应链中,一些代理商(阶段)可能采取不合理的行动(如啤酒游戏中那样),对于希望采取最佳行动的代理商来说,没有已知的最佳政策。我们建议一个基于深层次的Q网络的机器学习算法,以优化网络的总成本。当与遵循基础储备政策的代理商一起玩时,我们的算法获得接近最佳的订单数量。在其他代理商使用更现实的人类秩序行为模式时,它比一个基础库存政策要好得多。 与文献中的大多数其他算法不同,我们的算法对于一个愿意采取最佳行动的代理商来说,我们没有任何限制,对于啤酒价值链中的一种最优化的代理商在某个阶段里,我们进行一个深度的游戏的递化的递算。 任何深度算法是,我们进行一个深层次的递化的递校算法,一个真正的游戏中,一个高级的学习一个比,一个真正的递算法,一个比。我们进行着一个高级的算法,一个真正的递算法是用来去一个真正的递算。

1
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
7+阅读 · 2018年12月26日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员