In this paper we consider multi-objective reinforcement learning where the objectives are balanced using preferences. In practice, the preferences are often given in an adversarial manner, e.g., customers can be picky in many applications. We formalize this problem as an episodic learning problem on a Markov decision process, where transitions are unknown and a reward function is the inner product of a preference vector with pre-specified multi-objective reward functions. In the online setting, the agent receives a (adversarial) preference every episode and proposes policies to interact with the environment. We provide a model-based algorithm that achieves a regret bound $\widetilde{\mathcal{O}}\left({\sqrt{\min\{d,S\}\cdot H^3 SAK}}\right)$, where $d$ is the number of objectives, $S$ is the number of states, $A$ is the number of actions, $H$ is the length of the horizon, and $K$ is the number of episodes. Furthermore, we consider preference-free exploration, i.e., the agent first interacts with the environment without specifying any preference and then is able to accommodate arbitrary preference vectors up to $\epsilon$ error. Our proposed algorithm is provably efficient with a nearly optimal sample complexity $\widetilde{\mathcal{O}}\left({\frac{\min\{d,S\}\cdot H^4 SA}{\epsilon^2}}\right)$.


翻译:在本文中,我们考虑利用偏好平衡目标的多目标强化学习;在实践中,偏好往往是以对抗性的方式给予的,例如,客户可以在许多应用中挑挑剔。我们在Markov决定过程中将这一问题正式化为一个附带学习问题,在这个过程中,过渡是未知的,奖励功能是带有预先规定的多目标奖励功能的偏好矢量的内在产物。在网上设置中,代理人得到(对抗性)偏好每个事件,并提议与环境互动的政策。我们提供一种基于模型的算法,实现一个以宽度为约束的遗憾 $(宽度 )\ mathcal{O ⁇ left{O ⁇ left(sqrt=min ⁇ d,S ⁇ cddH}3 SAK ⁇ right) $(美元),其中美元是目标数目的分数,美元是州数,美元是行动的数量,美元是地平线的长度,美元是事件的数量。此外,我们考虑无优惠探索,也就是说,代理人首先与环境互动,而没有具体说明任何优惠,然后几乎能够任意地标度性地选择整个矢值。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Design and Analysis of Switchback Experiments
Arxiv
0+阅读 · 2021年1月14日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Arxiv
3+阅读 · 2018年10月5日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员