Sparse principal component analysis (PCA) is a popular tool for dimensional reduction of high-dimensional data. Despite its massive popularity, there is still a lack of theoretically justifiable Bayesian sparse PCA that is computationally scalable. A major challenge is choosing a suitable prior for the loadings matrix, as principal components are mutually orthogonal. We propose a spike and slab prior that meets this orthogonality constraint and show that the posterior enjoys both theoretical and computational advantages. Two computational algorithms, the PX-CAVI and the PX-EM algorithms, are developed. Both algorithms use parameter expansion to deal with the orthogonality constraint and to accelerate their convergence speeds. We found that the PX-CAVI algorithm has superior empirical performance than the PX-EM algorithm and two other penalty methods for sparse PCA. The PX-CAVI algorithm is then applied to study a lung cancer gene expression dataset. $\mathsf{R}$ package $\mathsf{VBsparsePCA}$ with an implementation of the algorithm is available on The Comprehensive R Archive Network.


翻译:主要元件分析( PCA) 是一个广受欢迎的工具, 用来对高维数据进行量性减少。 尽管它广受欢迎, 但仍缺乏理论上合理的巴伊西亚稀有的可计算缩放的五氯苯甲醚。 一项重大挑战是选择一个适合装载矩阵的预选工具, 因为主要元件是相互交错的。 我们提议在之前使用一个钉钉和板块, 以满足这个交错性限制, 并显示后继器享有理论和计算上的优势。 正在开发两种计算算法, PX- CAVI 和 PX- EM 算法。 两种算法都使用参数扩展来处理正向限制并加速其趋同速度。 我们发现, PX- CAVI 算法比 PX- EM 算法和另外两种稀薄的五氯苯的处罚方法具有较高的实证性。 然后, PX- CAVI 算法用于研究肺癌基因表达数据集。 $\mathsf{ { { $\\ vprass PCA} 和算法的实施。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
42+阅读 · 2020年12月18日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
已删除
将门创投
4+阅读 · 2017年11月1日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月25日
Gradient Origin Networks
Arxiv
0+阅读 · 2021年3月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
已删除
将门创投
4+阅读 · 2017年11月1日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员