An abundant amount of data gathered during wind tunnel testing and health monitoring of structures inspires the use of machine learning methods to replicate the wind forces. These forces are critical for both the design and life-cycle assessment of lifeline structures such as bridges. This paper presents a data-driven Gaussian Process-Nonlinear Finite Impulse Response (GP-NFIR) model of the nonlinear self-excited forces acting on bridges. Constructed in a nondimensional form, the model takes the effective wind angle of attack as lagged exogenous input and outputs a probability distribution of the aerodynamic forces. The nonlinear latent function, mapping the input to the output, is modeled by a GP regression. Consequently, the model is nonparametric, and as such, it avoids setting up the latent function's structure a priori. The training input is designed as band-limited random harmonic motion that consists of vertical and rotational displacements. Once trained, the model can predict the aerodynamic forces for both prescribed input motion and coupled aeroelastic analysis. The presented concept is first verified for a flat plate's analytical, linear solution by predicting the self-excited forces and flutter velocity. Finally, the framework is applied to a streamlined and bluff bridge deck based on Computational Fluid Dynamics (CFD) data. Here, the model's ability to predict nonlinear aerodynamic forces, critical flutter limit, and post-flutter behavior are highlighted. Further applications of the presented framework are foreseen in the design and online real-time monitoring of slender line-like structures.
翻译:风隧道测试和结构健康监测期间收集的大量数据激励人们使用机器学习方法复制风力。 这些力量对于诸如桥梁等生命线结构的设计与生命周期评估至关重要。 本文展示了由数据驱动的Gaussian 进程- 非线性非线性自振反应( GP- NFIR) 模型, 该模型由非线性自振力量构成, 以非维形式构建, 该模型采用攻击的有效风角度, 因为它是空气动力力量的概率分布。 非线性潜伏功能, 绘制输出的输入, 以GP回归为模型。 因此, 该模型是非参数, 因而避免将潜在功能的结构设置为前置。 培训投入设计为由垂直和旋转变位组成的带性随机调调运动。 该模型一旦经过培训, 就可以预测空气动力的能量动力, 以及空气动力动力的线性框架的分布。 所提出的概念首先被校验, 平板性结构的不线性设计、 直线性解决方案的精确度框架以精确度框架为基础, 直流到直流性 。 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 框架 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 框架 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压 直压