A wide range of problems in computational science and engineering require estimation of sparse eigenvectors for high dimensional systems. Here, we propose two variants of the Truncated Orthogonal Iteration to compute multiple leading eigenvectors with sparsity constraints simultaneously. We establish numerical convergence results for the proposed algorithms using a perturbation framework, and extend our analysis to other existing alternatives for sparse eigenvector estimation. We then apply our algorithms to solve the sparse principle component analysis problem for a wide range of test datasets, from simple simulations to real-world datasets including MNIST, sea surface temperature and 20 newsgroups. In all these cases, we show that the new methods get state of the art results quickly and with minimal parameter tuning.
翻译:计算科学和工程方面一系列广泛的问题要求估算高维系统稀有的源源体。 在这里, 我们提出两个变体, 以同时计算多重导导源源体, 并同时计算显性限制。 我们使用扰动框架为拟议算法设定数值趋同结果, 并将我们的分析扩展至其他现有的稀有源体估计替代方法 。 然后我们运用我们的算法来解决从简单的模拟到现实世界数据集, 包括MNIST、 海面温度和20个新闻组等一系列广泛的测试数据集的稀少原生源部分分析问题。 在所有这些案例中, 我们显示新的方法迅速获得了艺术结果的状态, 并且只有最小的参数调整 。