We introduce a class of Sparse, Physics-based, and Interpretable Neural Networks (SPINN) for solving ordinary and partial differential equations. By reinterpreting a traditional meshless representation of solutions of PDEs we develop a class of sparse neural network architectures that are interpretable. The SPINN model we propose here serves as a seamless bridge between two extreme modeling tools for PDEs, dense neural network based methods and traditional mesh-free numerical methods, thereby providing a novel means to develop a new class of hybrid algorithms that build on the best of both these viewpoints. A unique feature of the SPINN model that distinguishes it from other neural network based approximations proposed earlier is that it is (i) fully interpretable, and (ii) sparse in the sense that it has much fewer connections than a dense neural network of the same size. Further, the SPINN algorithm implicitly encodes mesh adaptivity and is able to handle discontinuities in the solutions too. In addition we demonstrate that Fourier series representations can be expressed as a special class of SPINN and propose generalized neural network analogues of Fourier representations. We illustrate the utility of the proposed method with a variety of examples involving ordinary differential equations, elliptic, parabolic, hyperbolic and nonlinear partial differential equations, and an example in fluid dynamics.


翻译:我们在此建议的 SPINN 模型是两种极端模型工具、 密集神经网络方法和传统的无网状数字方法之间的无缝桥梁, 从而提供了一种新型的混合算法, 建立在这两种观点的最好基础上。 SPINN 模型的一个独特特征是, 将它与先前提议的其他基于近似的神经网络区分开来, 因为它( i) 完全可以解释, 和 (ii) 稀疏, 因为它的连接远小于同一尺寸的稠密神经网络。 此外, SPINN 算法隐含了调适性, 并且能够处理解决方案中的不连续性。 此外, 我们证明, 4级序列表示可以表现为SPINN 的特殊类别, 并提议将它与先前提议的其他基于近似的神经网络区分开来, 其独特的特征是:(i) 完全可以解释的, 和(ii) 稀有, 因为它的连接度远小于同一尺寸的稠密神经网络。 此外, SPINN 算法隐含了适应性, 并能够处理解决方案中的不连续性。 此外, 我们证明, 4级的普通螺旋变等等等等等等式, 。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
26+阅读 · 2021年4月2日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
4+阅读 · 2017年11月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员