We present an algorithmic approach to estimate the value distributions of random variables of probabilistic loops whose statistical moments are (partially) known. Based on these moments, we apply two statistical methods, Maximum Entropy and Gram-Charlier series, to estimate the distributions of the loop's random variables. We measure the accuracy of our distribution estimation by comparing the resulting distributions using exact and estimated moments of the probabilistic loop, and performing statistical tests. We evaluate our method on several probabilistic loops with polynomial updates over random variables drawing from common probability distributions, including examples implementing financial and biological models. For this, we leverage symbolic approaches to compute exact higher-order moments of loops as well as use sampling-based techniques to estimate moments from loop executions. Our experimental results provide practical evidence of the accuracy of our method for estimating distributions of probabilistic loop outputs.
翻译:我们提出了一个算法方法来估计概率循环随机变量的价值分布,这些变量的统计时数(部分)是已知的。基于这些时数,我们运用两种统计方法,即最大英特罗比和格拉姆夏尔系列,来估计循环随机变量的分布情况。我们通过使用概率循环的准确和估计时数来比较所得出的分布,并进行统计测试,来衡量我们分布估计的准确性。我们评估了我们关于多个概率循环方法的方法,这些概率循环与从共同概率分布中提取的随机变量相比,多数值更新,包括实施金融和生物模型的例子。为此,我们利用象征性方法来计算精确的较高顺序环数,并利用基于取样的技术来估计环切过程的时数。我们的实验结果提供了我们估算概率循环输出分布方法的准确性的实际证据。