We study shrinkage estimation of the mean parameters of a class of multivariate distributions for which the diagonal entries of the corresponding covariance matrix are certain quadratic functions of the mean parameter. This class of distributions includes the diagonal multivariate natural exponential families. We propose two classes of semi-parametric shrinkage estimators for the mean and construct unbiased estimators of the corresponding risk. We establish the asymptotic consistency and convergence rates for these shrinkage estimators under squared error loss as both $n$, the sample size, and $p$, the dimension, tend to infinity. Next, we specialize these results to the diagonal multivariate natural exponential families, which have been classified as consisting of the normal, Poisson, gamma, multinomial, negative multinomial, and hybrid classes of distributions. We establish the consistency of our estimators in the normal, gamma, and negative multinomial cases subject to the condition that $p n^{-1/3} (\log{n})^{4/3} \to 0$, and in the Poisson and multinomial cases if $p n^{-1/2} \to 0$, as $n,p \to \infty$. Simulation studies are provided to evaluate the performance of our estimators and we illustrate that, in the gamma and Poisson cases, our estimators achieve lower risk than the maximum likelihood estimator, thereby demonstrating the superiority of our estimators over the maximum likelihood estimator.
翻译:我们研究一个多变量分布类别的平均参数的缩小估计, 相应的共差矩阵的对数分条目是该平均参数的某些二次函数。 这个分布类别包括对等多变量自然指数型家族。 我们为平均分布和构建对相应风险的公正估计, 提出两类半参数的半参数缩小估计值。 我们为这些在平地误差损失下的缩微缩估计值确定无症状的一致性和趋同率, 以美元为单位, 样本大小, 美元为单位。 尺寸为美元, 尺寸为美元, 尺寸为美元。 接下来, 我们将这些结果专门用于对对等的多变量自然指数型家族, 这些家族被归类为正常、 波瓦森、 伽马、 多元、 负多位和 混合分布类别。 我们为正常、 伽马和负多位测序的测算器, 以美元为单位, 样本和多位直径, 以美元表示我们最高概率, 以美元为美元。 4/3} 和多位测算的概率, 以美元为美元。