Humans have the ability to seamlessly combine low-level visual input with high-level symbolic reasoning often in the form of recognising objects, learning relations between them and applying rules. Neuro-symbolic systems aim to bring a unifying approach to connectionist and logic-based principles for visual processing and abstract reasoning respectively. This paper presents a complete neuro-symbolic method for processing images into objects, learning relations and logical rules in an end-to-end fashion. The main contribution is a differentiable layer in a deep learning architecture from which symbolic relations and rules can be extracted by pruning and thresholding. We evaluate our model using two datasets: subgraph isomorphism task for symbolic rule learning and an image classification domain with compound relations for learning objects, relations and rules. We demonstrate that our model scales beyond state-of-the-art symbolic learners and outperforms deep relational neural network architectures.


翻译:人类有能力无缝地将低层次的视觉输入与高层次的象征性推理结合起来,这种推理往往以辨认对象、学习它们之间的关系和适用规则的形式出现。神经同步系统旨在为视觉处理和抽象推理分别对联系主义和逻辑原则采取统一的方法。本文以端对端方式展示了将图像处理成对象、学习关系和逻辑规则的完整神经共振方法。主要贡献是深层次学习结构中的一个不同层次,在这个结构中,象征性关系和规则可以通过修剪和阈值来提取。我们用两个数据集来评估我们的模型:符号规则学习的子系统形态化任务以及图像分类领域,与学习对象、关系和规则的复合关系。我们证明我们的模型规模超越了最先进的象征性学习者,并超越了深层次的神经网络结构。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2021年10月19日
Arxiv
57+阅读 · 2021年5月3日
Learning by Abstraction: The Neural State Machine
Arxiv
6+阅读 · 2019年7月11日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Symbolic Priors for RNN-based Semantic Parsing
Arxiv
3+阅读 · 2018年9月20日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
7+阅读 · 2021年10月19日
Arxiv
57+阅读 · 2021年5月3日
Learning by Abstraction: The Neural State Machine
Arxiv
6+阅读 · 2019年7月11日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Symbolic Priors for RNN-based Semantic Parsing
Arxiv
3+阅读 · 2018年9月20日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
19+阅读 · 2018年3月28日
Top
微信扫码咨询专知VIP会员