Nested sampling is an important tool for conducting Bayesian analysis in Astronomy and other fields, both for sampling complicated posterior distributions for parameter inference, and for computing marginal likelihoods for model comparison. One technical obstacle to using nested sampling in practice is the requirement (for most common implementations) that prior distributions be provided in the form of transformations from the unit hyper-cube to the target prior density. For many applications - particularly when using the posterior from one experiment as the prior for another - such a transformation is not readily available. In this letter we show that parametric bijectors trained on samples from a desired prior density provide a general-purpose method for constructing transformations from the uniform base density to a target prior, enabling the practical use of nested sampling under arbitrary priors. We demonstrate the use of trained bijectors in conjunction with nested sampling on a number of examples from cosmology.


翻译:近距离取样是进行天文学和其他领域巴伊西亚分析的一个重要工具,既用于对参数推导的复杂后部分布进行取样,也用于计算模型比较的边际可能性。实际使用嵌套取样的一个技术障碍是(最常见的实施方式是)要求先以单位超立方体转换为目标前密度的形式提供先前的分布。对于许多应用,特别是使用一个实验的后部作为另一个实验的后部时,这种转换并非现成。我们在信中表明,从理想的先前密度样本中经过培训的参数比对器提供了一种通用方法,用于从统一基密度到目标前的构造转换,使得在任意的先前情况下能够实际使用嵌套式取样。我们用经过训练的双向导体与嵌套式采样结合使用了一些宇宙学的例子。

0
下载
关闭预览

相关内容

自监督学习最新研究进展
专知会员服务
77+阅读 · 2021年3月24日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
40+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年8月26日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
自监督学习最新研究进展
专知会员服务
77+阅读 · 2021年3月24日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
40+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员