We study the problem of {\sl certification}: given queries to a function $f : \{0,1\}^n \to \{0,1\}$ with certificate complexity $\le k$ and an input $x^\star$, output a size-$k$ certificate for $f$'s value on $x^\star$. This abstractly models a central problem in explainable machine learning, where we think of $f$ as a blackbox model that we seek to explain the predictions of. For monotone functions, a classic local search algorithm of Angluin accomplishes this task with $n$ queries, which we show is optimal for local search algorithms. Our main result is a new algorithm for certifying monotone functions with $O(k^8 \log n)$ queries, which comes close to matching the information-theoretic lower bound of $\Omega(k \log n)$. The design and analysis of our algorithm are based on a new connection to threshold phenomena in monotone functions. We further prove exponential-in-$k$ lower bounds when $f$ is non-monotone, and when $f$ is monotone but the algorithm is only given random examples of $f$. These lower bounds show that assumptions on the structure of $f$ and query access to it are both necessary for the polynomial dependence on $k$ that we achieve.
翻译:{sl 认证} 问题 : 给一个函数 $ f 的查询 : @ 0, 1\ \ \ \ \ \ \ \ \ \ \ \ 10, 1\ \ \ \ \ \ \ \ \ \ \ \ \ 0. 1 \ \ \ \, 0. 1 \ 美元, 带有证书复杂性的 $\ le k$ 和 一个输入 $x lstar$, 输出一个大小- 美元 美元 的证书 美元 。 这个抽象的模型在可解释的机器学习中是一个中心问题, 我们把 $( k) 当作一个黑盒模型来解释预测。 对于单调函数来说, 安格鲁因的经典本地搜索算法以 $( $) 来完成此项任务, 我们用它来显示对本地搜索算法最优的 。 我们的主要结果是用一个新的算法来验证单调的单调值$ 函数的验证单调值, 当$ ($ ) 的计算只有不固定的缩缩数 和 的计算法的模型是 。