Decentralized learning involves training machine learning models over remote mobile devices, edge servers, or cloud servers while keeping data localized. Even though many studies have shown the feasibility of preserving privacy, enhancing training performance or introducing Byzantine resilience, but none of them simultaneously considers all of them. Therefore we face the following problem: \textit{how can we efficiently coordinate the decentralized learning process while simultaneously maintaining learning security and data privacy?} To address this issue, in this paper we propose SPDL, a blockchain-secured and privacy-preserving decentralized learning scheme. SPDL integrates blockchain, Byzantine Fault-Tolerant (BFT) consensus, BFT Gradients Aggregation Rule (GAR), and differential privacy seamlessly into one system, ensuring efficient machine learning while maintaining data privacy, Byzantine fault tolerance, transparency, and traceability. To validate our scheme, we provide rigorous analysis on convergence and regret in the presence of Byzantine nodes. We also build a SPDL prototype and conduct extensive experiments to demonstrate that SPDL is effective and efficient with strong security and privacy guarantees.
翻译:分散化学习涉及对远程移动设备、边缘服务器或云端服务器进行培训,同时保持数据本地化。尽管许多研究表明了保护隐私、提高培训性能或采用拜占庭复原力的可行性,但没有一项同时考虑。 因此,我们面临以下问题:\ textit{我们如何在同时维护学习安全和数据隐私的同时有效协调分散化学习过程?}为解决这一问题,我们在本文件中提议了SPDL,一个有供应链保障和隐私保护的分散化学习计划。SPDL整合了块链、Byzantine Fault-Tolerant(BFT)共识、BFT Graidents Agregation 规则(GAR),以及将隐私无缝地区分到一个系统中,确保高效的机器学习,同时维护数据隐私。Byzantine断层容忍、透明和可追溯性。为了验证我们的计划,我们还就Byzantine节点存在的趋同和遗憾问题进行了严格的分析。我们还建立了一个SPDL原型,并进行了广泛的实验,以证明SPDL在有力的安全和隐私保障下是有效和高效的。