When data is collected in an adaptive manner, even simple methods like ordinary least squares can exhibit non-normal asymptotic behavior. As an undesirable consequence, hypothesis tests and confidence intervals based on asymptotic normality can lead to erroneous results. We propose an online debiasing estimator to correct these distributional anomalies in least squares estimation. Our proposed method takes advantage of the covariance structure present in the dataset and provides sharper estimates in directions for which more information has accrued. We establish an asymptotic normality property for our proposed online debiasing estimator under mild conditions on the data collection process, and provide asymptotically exact confidence intervals. We additionally prove a minimax lower bound for the adaptive linear regression problem, thereby providing a baseline by which to compare estimators. There are various conditions under which our proposed estimator achieves the minimax lower bound up to logarithmic factors. We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
翻译:当数据以适应方式收集时,即使是普通的最小方形等简单方法,也可以显示非正常的无现成行为。作为一种不可取的后果,基于无现成常态的假设测试和信任间隔可能导致错误的结果。我们提议一个在线降低偏差的估算器,以纠正最小平方估计中的这些分布异常。我们提议的方法利用数据集中存在的共变结构,并在更多信息累积的方向上提供更精确的估计。我们为数据收集进程中拟议的在线偏差估计器建立了一种无现成的正常属性,在温和的条件下提供了尽可能精确的互信间隔。我们进一步证明适应性线性线性回归问题的缩微鼠标受限较低,从而为比较估算器提供了基准。我们提议的估算器在各种条件下通过多臂波段、自动递增时间序列和积极探索学习来达到最小负负值的下缩值。我们通过多臂波段、自动递增时间序列估算和积极探索来展示我们理论的实用性。