We analyze the popular kernel polynomial method (KPM) for approximating the spectral density (eigenvalue distribution) of an $n\times n$ Hermitian matrix $A$. We prove that a simple and practical variant of the KPM algorithm can approximate the spectral density to $\epsilon$ accuracy in the Wasserstein-1 distance with roughly $O({1}/{\epsilon})$ matrix-vector multiplications with $A$. This yields a provable linear time result for the problem with better $\epsilon$ dependence than prior work. The KPM variant we study is based on damped Chebyshev polynomial expansions. We show that it is stable, meaning that it can be combined with any approximate matrix-vector multiplication algorithm for $A$. As an application, we develop an $O(n\cdot \text{poly}(1/\epsilon))$ time algorithm for computing the spectral density of any $n\times n$ normalized graph adjacency or Laplacian matrix. This runtime is sublinear in the size of the matrix, and assumes sample access to the graph. Our approach leverages several tools from approximation theory, including Jackson's seminal work on approximation with positive kernels [Jackson, 1912], and stability properties of three-term recurrence relations for orthogonal polynomials.


翻译:我们用$A( {1} /\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
78+阅读 · 2021年3月16日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
112+阅读 · 2020年5月15日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
已删除
将门创投
6+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Arxiv
0+阅读 · 2021年9月13日
VIP会员
相关VIP内容
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
已删除
将门创投
6+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Top
微信扫码咨询专知VIP会员