This work revisits the multiplicative weights update technique (MWU) which has a variety of applications, especially in learning and searching algorithms. In particular, the Bayesian update method is a well known version of MWU that is particularly applicable for the problem of searching in a given domain. An ideal scenario for that method is when the input distribution is known a priori and each single update maximizes the information gain. In this work we consider two search domains - linear orders (sorted arrays) and graphs, where the aim of the search is to locate an unknown target by performing as few queries as possible. Searching such domains is well understood when each query provides a correct answer and the input target distribution is uniform. Hence, we consider two generalizations: the noisy search both with arbitrary and adversarial (i.e., unknown) target distributions. We obtain several results providing full characterization of the query complexities in the three settings: adversarial Monte Carlo, adversarial Las Vegas and distributional Las Vegas. Our algorithms either improve, simplify or patch earlier ambiguities in the literature - see the works of Emamjomeh-Zadeh et al. [STOC 2016], Dereniowski et. al. [SOSA@SODA 2019] and Ben-Or and Hassidim [FOCS 2008]. In particular, all algorithms give strategies that provide the optimal number of queries up to lower-order terms. Our technical contribution lies in providing generic search techniques that are able to deal with the fact that, in general, queries guarantee only suboptimal information gain.
翻译:这项工作重新审视了具有多种应用的多复制加权更新技术(MWU), 特别是在学习和搜索算法方面。 特别是, Bayesian 更新方法是一个众所周知的MWU版本, 特别适用于特定域的搜索问题。 该方法的理想情景是, 输入分布以先验的方式已知, 每次更新都最大限度地增加信息收益。 在此工作中, 我们考虑两个搜索域 - 线性命令( 排序阵列) 和图表, 搜索的目的是通过尽可能少的查询来定位一个未知的目标。 当每个查询提供正确答案和输入目标分布一致时, 搜索这些域是人们非常理解的。 因此, 我们考虑两种笼统的查找: 任意和对立( 未知) 目标分布的杂乱搜索。 我们得到的几项结果, 这三个环境的复杂度是: 对抗性Montelo、 对抗性拉斯维加斯和 拉斯维加斯的分布图。 我们的算法要么改进、 简化或弥补早期文献中的模糊性标度。 我们的通用查询技术查询方法的作品在Emjome- Zaderieval etal asal real real.