Traffic forecasting is essential for the traffic construction of smart cities in the new era. However, traffic data's complex spatial and temporal dependencies make traffic forecasting extremely challenging. Most existing traffic forecasting methods rely on the predefined adjacency matrix to model the Spatio-temporal dependencies. Nevertheless, the road traffic state is highly real-time, so the adjacency matrix should change dynamically with time. This article presents a new Multi-Spatio-temporal Fusion Graph Recurrent Network (MSTFGRN) to address the issues above. The network proposes a data-driven weighted adjacency matrix generation method to compensate for real-time spatial dependencies not reflected by the predefined adjacency matrix. It also efficiently learns hidden Spatio-temporal dependencies by performing a new two-way Spatio-temporal fusion operation on parallel Spatio-temporal relations at different moments. Finally, global Spatio-temporal dependencies are captured simultaneously by integrating a global attention mechanism into the Spatio-temporal fusion module. Extensive trials on four large-scale, real-world traffic datasets demonstrate that our method achieves state-of-the-art performance compared to alternative baselines.
翻译:交通流量预测对于新时代智能城市的交通建设至关重要,然而,交通数据复杂的空间和时间依赖性使得交通流量预测极具挑战性。大多数现有的交通预测方法都依靠预先界定的相邻矩阵来模拟时空依赖性。尽管如此,道路交通状态是高度实时的,因此相邻矩阵应该随着时间动态变化。本篇文章为处理上述问题提供了一个新的多空间时空透图经常网络(MSTFGRN)。网络提出一种数据驱动的加权对称矩阵生成方法,以弥补未以预先界定的相邻矩阵反映的实时空间依赖性。它通过在不同时刻执行新的双向空间时空依赖性流动操作,有效地学习隐藏的时空依赖性。最后,通过将全球关注机制纳入空间时际组合模块来同时捕捉到全球空间时空依赖性依赖性动态经常网络(MSTFTGRN)。网络还提出了一种由数据驱动的加权对称加权对时间依赖性矩阵进行补偿的方法,以弥补未以预先界定的相邻矩阵形式反映的实时空间依赖性空间依赖性。它还通过在不同时刻执行新的双向空间空间时空空间空间空间空间空间空间空间空间空间空间动态空间动态动态模型进行大规模测试,从而在四种地面上进行大规模的地面对地进行地面对地面对地进行地面对地基运行进行地面对地基运行进行地面对地进行地面对地面对地基运行进行地面对地基式的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟性试验。