Gale and Shapley introduced a matching problem between two sets of agents where each agent on one side has an exogenous preference ordering over the agents on the other side. They defined a matching as stable if no unmatched pair can both improve their utility by forming a new pair. They proved, algorithmically, the existence of a stable matching. Shapley and Shubik, Demange and Gale, and many others extended the model by allowing monetary transfers. We offer a further extension by assuming that matched couples obtain their payoff endogenously as the outcome of a strategic game they have to play in a usual non-cooperative sense (without commitment) or in a semi-cooperative way (with commitment, as the outcome of a bilateral binding contract in which each player is responsible for her part of the contract). Depending on whether the players can commit or not, we define in each case a solution concept that combines Gale-Shapley pairwise stability with a (generalized) Nash equilibrium stability. In each case we give necessary and sufficient conditions for the set of solutions to be non-empty and provide an algorithm to compute a solution.
翻译:暂无翻译