It is shown how to efficiently and accurately compute and optimize a range of cross validation criteria for a wide range of models estimated by minimizing a quadratically penalized smooth loss. Example models include generalized additive models for location scale and shape and smooth additive quantile regression. Example losses include negative log likelihoods and smooth quantile losses. Example cross validation criteria include leave-out-neighbourhood cross validation for dealing with un-modelled short range autocorrelation as well as the more familiar leave-one-out cross validation. For a $p$ coefficient model of $n$ data, estimable at $O(np^2)$ computational cost, the general $O(n^2p^2)$ cost of ordinary cross validation is reduced to $O(np^2)$, computing the cross validation criterion to $O(p^3n^{-2})$ accuracy. This is achieved by directly approximating the model coefficient estimates under data subset omission, via efficiently computed single step Newton updates of the full data coefficient estimates. Optimization of the resulting cross validation criterion, with respect to multiple smoothing/precision parameters, can be achieved efficiently using quasi-Newton optimization, adapted to deal with the indefiniteness that occurs when the optimal value for a smoothing parameter tends to infinity. The link between cross validation and the jackknife can be exploited to achieve reasonably well calibrated uncertainty quantification for the model coefficients in non standard settings such as leaving-out-neighbourhoods under residual autocorrelation or quantile regression. Several practical examples are provided, focussing particularly on dealing with un-modelled auto-correlation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

交叉验证,有时也称为旋转估计或样本外测试,是用于评估统计结果如何的各种类似模型验证技术中的任何一种分析将概括为一个独立的数据集。它主要用于设置,其目的是预测,和一个想要估计如何准确地一个预测模型在实践中执行。在预测问题中,通常会给模型一个已知数据的数据集,在该数据集上进行训练(训练数据集)以及未知数据(或首次看到的数据)的数据集(根据该数据集测试模型)(称为验证数据集或测试集)。交叉验证的目标是测试模型预测未用于估计数据的新数据的能力,以发现诸如过度拟合或选择偏倚之类的问题,并提供有关如何进行建模的见解。该模型将推广到一个独立的数据集(例如,未知数据集,例如来自实际问题的数据集)。 一轮交叉验证涉及分割一个样品的数据到互补的子集,在一个子集执行所述分析(称为训练集),以及验证在另一子集中的分析(称为验证集合或测试集)。为了减少可变性,在大多数方法中,使用不同的分区执行多轮交叉验证,并将验证结果组合(例如取平均值)在各轮中,以估计模型的预测性能。 总而言之,交叉验证结合了预测中适用性的度量(平均),以得出模型预测性能的更准确估计。
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
143+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2023年5月22日
Arxiv
16+阅读 · 2022年11月21日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
19+阅读 · 2020年7月13日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
27+阅读 · 2017年12月6日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
143+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
12+阅读 · 2023年5月22日
Arxiv
16+阅读 · 2022年11月21日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
19+阅读 · 2020年7月13日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
27+阅读 · 2017年12月6日
相关基金
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员