Legged robot locomotion is a challenging task due to a myriad of sub-problems, such as the hybrid dynamics of foot contact and the effects of the desired gait on the terrain. Accurate and efficient state estimation of the floating base and the feet joints can help alleviate much of these issues by providing feedback information to robot controllers. Current state estimation methods are highly reliant on a conjunction of visual and inertial measurements to provide real-time estimates, thus being handicapped in perceptually poor environments. In this work, we show that by leveraging the kinematic chain model of the robot via a factor graph formulation, we can perform state estimation of the base and the leg joints using primarily proprioceptive inertial data. We perform state estimation using a combination of preintegrated IMU measurements, forward kinematic computations, and contact detections in a factor-graph based framework, allowing our state estimate to be constrained by the robot model. Experimental results in simulation and on hardware show that our approach out-performs current proprioceptive state estimation methods by 27% on average, while being generalizable to a variety of legged robot platforms. We demonstrate our results both quantitatively and qualitatively on a wide variety of trajectories.
翻译:由于各种次级问题,例如脚接触的混合动态和所需步态对地形的影响等,脚接触的混合动态和所期望的步态对地形的影响等,拖动的机器人腿动移动是一个具有挑战性的任务。对浮基和脚关节的精确而高效的状态估计可以通过向机器人控制者提供反馈信息,帮助缓解其中的许多问题。当前状态估计方法高度依赖视觉和惯性测量的结合,以提供实时估计,从而在感知贫乏的环境中处于障碍状态。在这项工作中,我们表明,通过利用机器人运动链模型的组合,我们可以主要利用自我感知惯性惯性数据对基站和腿关节进行状态估计。我们使用一种综合的IMU测量、前动能计算和基于要素测量的接触探测组合,在一个基于要素的框架中进行状态估计,使我们的状态估计受到机器人模型的制约。模拟和硬件实验结果显示,我们的方法在平均情况下使目前流行的状态估计方法超出27 %,同时可以向多种截面的机器人定性平台展示我们的结果。我们用一种广泛的定量和定性平台展示我们的结果。