Quadruped animal locomotion emerges from the interactions between the spinal central pattern generator (CPG), sensory feedback, and supraspinal drive signals from the brain. Computational models of CPGs have been widely used for investigating the spinal cord contribution to animal locomotion control in computational neuroscience and in bio-inspired robotics. However, the contribution of supraspinal drive to anticipatory behavior, i.e. motor behavior that involves planning ahead of time (e.g. of footstep placements), is not yet properly understood. In particular, it is not clear whether the brain modulates CPG activity and/or directly modulates muscle activity (hence bypassing the CPG) for accurate foot placements. In this paper, we investigate the interaction of supraspinal drive and a CPG in an anticipatory locomotion scenario that involves stepping over gaps. By employing deep reinforcement learning (DRL), we train a neural network policy that replicates the supraspinal drive behavior. This policy can either modulate the CPG dynamics, or directly change actuation signals to bypass the CPG dynamics. Our results indicate that the direct supraspinal contribution to the actuation signal is a key component for a high gap crossing success rate. However, the CPG dynamics in the spinal cord are beneficial for gait smoothness and energy efficiency. Moreover, our investigation shows that sensing the front feet distances to the gap is the most important and sufficient sensory information for learning gap crossing. Our results support the biological hypothesis that cats and horses mainly control the front legs for obstacle avoidance, and that hind limbs follow an internal memory based on the front limbs' information. Our method enables the quadruped robot to cross gaps of up to 20 cm (50% of body-length) without any explicit dynamics modeling or Model Predictive Control (MPC).


翻译:脊椎中央模式生成器(CPG)、 感官反馈和超脊柱驱动信号之间的相互作用导致动物振荡。 CPG的计算模型被广泛用于调查计算神经科学和生物激励机器人中的脊髓对动物振动控制的贡献。然而,超脊椎驱动对预测行为的贡献,即涉及提前规划的运动行为(如脚步定位)尚未被正确理解。特别是,不清楚大脑调整 CPG 和/或直接调整肌肉活动(通过绕过 CPG ) 的计算模型被广泛用于调查计算神经科学和生物激励机器人对动物振动控制的贡献。然而,超脊椎驱动对预感行为的贡献,即涉及提前规划的动作行为(如脚步定位定位) 尚未被正确理解。 尤其不清楚的是, 大脑平足运动的平稳调整 CPG活动和/ 直接调节肌肉活动(通过绕过 CPG) 之前的动力动力运动,即直接改变我们心脏运动的关键动作信号。</s>

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
42+阅读 · 2022年6月30日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关VIP内容
自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
42+阅读 · 2022年6月30日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员