Face parsing infers a pixel-wise label to each facial component, which has drawn much attention recently.Previous methods have shown their success in face parsing, which however overlook the correlation among facial components.As a matter of fact, the component-wise relationship is a critical clue in discriminating ambiguous pixels in facial area.To address this issue, we propose adaptive graph representation learning and reasoning over facial components, aiming to learn representative vertices that describe each component, exploit the component-wise relationship and thereby produce accurate parsing results against ambiguity. In particular, we devise an adaptive and differentiable graph abstraction method to represent the components on a graph via pixel-to-vertex projection under the initial condition of a predicted parsing map, where pixel features within a certain facial region are aggregated onto a vertex. Further, we explicitly incorporate the image edge as a prior in the model, which helps to discriminate edge and non-edge pixels during the projection, thus leading to refined parsing results along the edges.Then, our model learns and reasons over the relations among components by propagating information across vertices on the graph. Finally, the refined vertex features are projected back to pixel grids for the prediction of the final parsing map.To train our model, we propose a discriminative loss to penalize small distances between vertices in the feature space, which leads to distinct vertices with strong semantics. Experimental results show the superior performance of the proposed model on multiple face parsing datasets, along with the validation on the human parsing task to demonstrate the generalizability of our model.


翻译:面部剖面部分的像素标签, 最近引起很多注意 。 先前的方法在面部剖析中显示了它们的成功, 但是却忽略了面部部分的关联性 。 事实上, 构件- 角度关系是区别面部区域模糊像素的关键线索 。 为了解决这个问题, 我们提议对面部部分进行调整图形代表学习和推理, 目的是学习描述每个部分的代表性的斜体, 利用组件- 关系, 从而产生准确的面部解析结果 。 特别是, 我们设计了适应性和不同的图形抽象抽象化方法, 在预测的面部剖面部分的初始状态下, 通过像素到上方的直径预测来代表图表中的不同成分。 某些面部的像特征被聚合到一个顶部。 此外, 我们明确将图像边缘作为模型的前一端, 这有助于在预测中区分边缘和非顶部的模型, 从而导致在边缘进行精确的面部位分析结果 。 然后, 我们的模型会学习和原因在图表后方位分析结果中, 显示我们前端的直处的直处的直系关系 。 。 将数据显示我们预测到直部的图像中, 的直部的图像到直至最后显示到直部的图中, 。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Representation Learning on Network 网络表示学习
全球人工智能
10+阅读 · 2017年10月19日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Representation Learning on Network 网络表示学习
全球人工智能
10+阅读 · 2017年10月19日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员