We propose a functional view of matrix decomposition problems on graphs such as geometric matrix completion and graph regularized dimensionality reduction. Our unifying framework is based on the key idea that using a reduced basis to represent functions on the product space is sufficient to recover a low rank matrix approximation even from a sparse signal. We validate our framework on several real and synthetic benchmarks (for both problems) where it either outperforms state of the art or achieves competitive results at a fraction of the computational effort of prior work.
翻译:我们建议对诸如几何矩阵完成和图表正规化维度减少等图表中的矩阵分解问题进行实用的审视,我们的统一框架基于一个关键理念,即即使从一个稀少的信号中,使用减少的基数来代表产品空间的功能,也足以恢复一个低级矩阵近似值。 我们根据若干实际和合成基准(针对这两个问题)来验证我们的框架,即它要么优于最新水平,要么在先前的计算工作中取得竞争结果。