Knowledge graphs (KGs) are key tools in many AI-related tasks such as reasoning or question answering. This has, in turn, propelled research in link prediction in KGs, the task of predicting missing relationships from the available knowledge. Solutions based on KG embeddings have shown promising results in this matter. On the downside, these approaches are usually unable to explain their predictions. While some works have proposed to compute post-hoc rule explanations for embedding-based link predictors, these efforts have mostly resorted to rules with unbounded atoms, e.g., bornIn(x,y) => residence(x,y), learned on a global scope, i.e., the entire KG. None of these works has considered the impact of rules with bounded atoms such as nationality(x,England) => speaks(x, English), or the impact of learning from regions of the KG, i.e., local scopes. We therefore study the effects of these factors on the quality of rule-based explanations for embedding-based link predictors. Our results suggest that more specific rules and local scopes can improve the accuracy of the explanations. Moreover, these rules can provide further insights about the inner-workings of KG embeddings for link prediction.


翻译:知识图表(KGs)是许多与AI有关的任务的关键工具,例如推理或回答问题。这反过来又推动了对KGs中连接预测的研究,这是从现有知识中预测缺失关系的任务。基于KG嵌入的解决方案在这方面已经显示出有希望的结果。在负面方面,这些方法通常无法解释其预测。虽然有些工作提议计算嵌入链接预测器的后热规则解释,但这些努力大多采用无约束原子的规则,例如出生于In(x,y) ⁇ 居所(x,y),在全球范围内学习,即整个KG。这些工作都没有考虑过约束原子的规则的影响,如国籍(x,England) 语(x,英语) 或从KG区域(即地方范围)学习的影响。因此,我们研究这些因素对基于规则解释嵌入链接预测器的质量的影响,例如出生于In(x,y) ⁇ 居所(x,y) 住宅(x,y), 在全球范围上学习,即整个KG。我们的结果显示,更具体的规则和嵌入规则可以提供更精确性的解释。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2021年9月22日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员