Developing robotic technologies for use in human society requires ensuring the safety of robots' navigation behaviors while adhering to pedestrians' expectations and social norms. However, maintaining real-time communication between robots and pedestrians to avoid collisions can be challenging. To address these challenges, we propose a novel socially-aware navigation benchmark called NaviSTAR, which utilizes a hybrid Spatio-Temporal grAph tRansformer (STAR) to understand interactions in human-rich environments fusing potential crowd multi-modal information. We leverage off-policy reinforcement learning algorithm with preference learning to train a policy and a reward function network with supervisor guidance. Additionally, we design a social score function to evaluate the overall performance of social navigation. To compare, we train and test our algorithm and other state-of-the-art methods in both simulator and real-world scenarios independently. Our results show that NaviSTAR outperforms previous methods with outstanding performance\footnote{The source code and experiment videos of this work are available at: https://sites.google.com/view/san-navistar
翻译:在人类社会中开发用于机器人技术需要保证机器人导航行为的安全性,同时遵守行人的期望和社会规范。然而,在机器人和行人之间保持实时通讯以避免碰撞可能存在困难。为了解决这些挑战,我们提出了一个新颖的社交导航基准,称为NaviSTAR。它利用混合时空图转换(STAR)来理解人密集环境中的交互,融合了潜在群体多模态信息。我们利用离策略强化学习算法和偏好学习来训练一个策略和奖励函数网络,同时加入监督的指导。此外,我们设计了一个社交得分函数来评估社交导航的总体性能。为了比较,我们将我们的算法以及其他最新方法在模拟器和真实场景下独立地进行训练和测试。我们的结果显示,NaviSTAR在表现上优于以前的方法,表现出色。
注:本工作的源代码和实验视频可在以下网址找到:https://sites.google.com/view/san-navistar