In this paper, we discuss an imitation learning based method for reducing the calibration error for a mixed reality system consisting of a vision sensor and a projector. Unlike a head mounted display, in this setup, augmented information is available to a human subject via the projection of a scene into the real world. Inherently, the camera and projector need to be calibrated as a stereo setup to project accurate information in 3D space. Previous calibration processes require multiple recording and parameter tuning steps to achieve the desired calibration, which is usually time consuming process. In order to avoid such tedious calibration, we train a CNN model to iteratively correct the extrinsic offset given a QR code and a projected pattern. We discuss the overall system setup, data collection for training, and results of the auto-correction model.
翻译:在本文中,我们讨论一种以模拟学习为基础的方法来减少由视觉传感器和投影仪组成的混合现实系统的校准误差。 与这个安装头部的显示器不同, 在这个设置中, 通过向真实世界投影, 人体主体可以获得更多的信息。 自然, 相机和投影器需要校准为立体空间投射准确信息的立体装置。 以前的校准程序需要多个记录和参数调控步骤, 以实现所需的校准, 而这通常是耗时的过程。 为了避免这种烦琐的校准, 我们训练了CNN模型, 以便根据QR 代码和预测模式, 迭代校正外部偏移。 我们讨论整个系统设置、 培训数据收集以及自动校正模型的结果 。