Evaluating quantum circuits is currently very noisy. Therefore, developing classical bootstraps that help minimize the number of times quantum circuits have to be executed on noisy quantum devices is a powerful technique for improving the practicality of Variational Quantum Algorithms. CAFQA is a previously proposed classical bootstrap for VQAs that uses an initial ansatz that reduces to Clifford operators. CAFQA has been shown to produce fairly accurate initialization for VQA applied to molecular chemistry Hamiltonians. Motivated by this result, in this paper we seek to analyze the Clifford states that optimize the cost function for a new type of Hamiltonian, namely Transverse Field Ising Hamiltonians. Our primary result connects the problem of finding the optimal CAFQA initialization to a submodular minimization problem which in turn can be solved in polynomial time.
翻译:暂无翻译