This paper considers the problem of fast MRI reconstruction. We propose a novel Transformer-based framework for directly processing the sparsely sampled signals in k-space, going beyond the limitation of regular grids as ConvNets do. We adopt an implicit representation of spectrogram, treating spatial coordinates as inputs, and dynamically query the partially observed measurements to complete the spectrogram, i.e. learning the inductive bias in k-space. To strive a balance between computational cost and reconstruction quality, we build an hierarchical structure with low-resolution and high-resolution decoders respectively. To validate the necessity of our proposed modules, we have conducted extensive experiments on two public datasets, and demonstrate superior or comparable performance over state-of-the-art approaches.
翻译:本文探讨了快速磁共振重建的问题。 我们提出一个新的基于变换器的框架,直接处理K-空间中稀有样本信号,超越常规网格的限制,如ConvNets所做的那样。 我们采用了隐含的光谱代表,将空间坐标作为投入处理,并动态地询问部分观测到的测量,以完成光谱,即学习K-空间中的感应偏差。为了在计算成本和重建质量之间求得平衡,我们建立了一个等级结构,分别使用低分辨率和高分辨率解析器。为了验证我们提议的模块的必要性,我们对两个公共数据集进行了广泛的实验,并展示了相对于最新方法的优劣或可比较性表现。