The semantic segmentation (SS) task aims to create a dense classification by labeling at the pixel level each object present on images. Convolutional neural network (CNN) approaches have been widely used, and exhibited the best results in this task. However, the loss of spatial precision on the results is a main drawback that has not been solved. In this work, we propose to use a multi-task approach by complementing the semantic segmentation task with edge detection, semantic contour, and distance transform tasks. We propose that by sharing a common latent space, the complementary tasks can produce more robust representations that can enhance the semantic labels. We explore the influence of contour-based tasks on latent space, as well as their impact on the final results of SS. We demonstrate the effectiveness of learning in a multi-task setting for hourglass models in the Cityscapes, CamVid, and Freiburg Forest datasets by improving the state-of-the-art without any refinement post-processing.
翻译:语义分解( SS) 任务的目的是通过在像素层次上给图像上显示的每个对象贴标签来创建密集的分类。 进化神经网络( CNN) 方法已被广泛使用, 并展示了这一任务中的最佳结果。 但是, 结果的空间精确度的丧失是一个主要的缺点, 尚未解决 。 在这项工作中, 我们提议使用多任务方法, 以边缘检测、 语义等和距离转换任务来补充语义分解任务 。 我们提议, 通过共享共同的潜在空间, 互补任务可以产生更强有力的表达方式, 从而提升语义标签。 我们探索基于等离子任务对潜在空间的影响, 及其对SS 最终结果的影响。 我们展示了在多任务环境下学习市政风景、 CamVid 和 Freiburg For 模型的有效性, 在不作任何改进后处理的情况下改进时, 。