We tackle a new task, event graph completion, which aims to predict missing event nodes for event graphs. Existing link prediction or graph completion methods have difficulty dealing with event graphs because they are usually designed for a single large graph such as a social network or a knowledge graph, rather than multiple small dynamic event graphs. Moreover, they can only predict missing edges rather than missing nodes. In this work, we propose to utilize event schema, a template that describes the stereotypical structure of event graphs, to address the above issues. Our schema-guided event graph completion approach first maps an instance event graph to a subgraph of the schema graph by a heuristic subgraph matching algorithm. Then it predicts whether a candidate event node in the schema graph should be added to the instantiated schema subgraph by characterizing two types of local topology of the schema graph: neighbors of the candidate node and the subgraph, and paths that connect the candidate node and the subgraph. These two modules are later combined together for the final prediction. We also propose a self-supervised strategy to construct training samples, as well as an inference algorithm that is specifically designed to complete event graphs. Extensive experimental results on four datasets demonstrate that our proposed method achieves state-of-the-art performance, with 4.3% to 19.4% absolute F1 gains over the best baseline method on the four datasets.
翻译:我们处理新的任务,即事件图完成,目的是为事件图表预测缺失的事件节点。现有的链接预测或图表完成方法难以处理事件图,因为它们通常是为社交网络或知识图表等一个大图设计的,而不是为多个小动态事件图设计的。此外,它们只能预测缺失的边缘,而不是缺失节点。在这项工作中,我们提议利用事件图(一个描述事件图陈规定型结构的模板)来解决上述问题。我们的系统指导事件图完成方法首先将事件图绘制成一个实例事件图图,用一个超常子图匹配算法绘制成事件图的子图。然后,它预测是否应该将Schema图中的候选人事件节点添加到即时化的系统图子图子图子图中,通过描述两种类型的本地图子图案:候选人节点和子图谱的邻居,以及连接候选人节点和子图谱的路径。这两个模块后来通过一个超时序子图谱匹配一个事件表图案图案情图表的子图图案图案图案图案图。我们还提议了一个完整的自我校准的模型化战略,用来构建模型模型的模型的模型,用来测量图案底图案图案图案底图案图案图案图案底图案的模型, 具体地算。我们用了四种方法,用来测量的模型的模型的模型,用来测量了四个的模型,用来测量方法,用来测量算。