We tackle estimating sparse coefficients in a linear regression when the covariates are sampled from an $L$-subexponential random vector. This vector belongs to a class of distributions that exhibit heavier tails than Gaussian random vector. Previous studies have established error bounds similar to those derived for Gaussian random vectors. However, these methods require stronger conditions than those used for Gaussian random vectors to derive the error bounds. In this study, we present an error bound identical to the one obtained for Gaussian random vectors up to constant factors without imposing stronger conditions, when the covariates are drawn from an $L$-subexponential random vector. Interestingly, we employ an $\ell_1$-penalized Huber regression, which is known for its robustness against heavy-tailed random noises rather than covariates. We believe that this study uncovers a new aspect of the $\ell_1$-penalized Huber regression method.
翻译:暂无翻译